Validity and Regularization of Classical Half-Space Equations
نویسندگان
چکیده
منابع مشابه
existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولPlane Strain Deformation of a Poroelastic Half-Space Lying Over Another Poroelastic Half-Space
The plane strain deformation of an isotropic, homogeneous, poroelastic medium caused by an inclined line-load is studied using the Biot linearized theory for fluid saturated porous materials. The analytical expressions for the displacements and stresses in the medium are obtained by applying suitable boundary conditions. The solutions are obtained analytically for the limiting case of undrained...
متن کاملTransport Equations for Waves in a Half Space
We derive boundary conditions for the phase space energy density of acoustic waves in a half space, in the high frequency limit. These boundary conditions generalize the usual re ection-transmission relations for plane waves and are well suited for the study of wave propagation in bounded random media in the radiative transport approximation [15]. The high frequency analysis is based on direct ...
متن کاملA Convergent Method for Linear Half-space Kinetic Equations
We give a unified proof for the well-posedness of a class of linear half-space equations with general incoming data and construct a Galerkin method to numerically resolve this type of equations in a systematic way. Our main strategy in both analysis and numerics includes three steps: adding damping terms to the original half-space equation, using an inf-sup argument and even-odd decomposition t...
متن کاملRegularization and Scale Space
Computational vision often needs to deal with derivatives of digital images. Derivatives are not intrinsic properties of a digital image; a paradigm is required to make them well-deened. Normally, a linear ltering is applied. This can be formulated in terms of scale space, functional minimization or edge detection lters. In this paper, we take regularization (or functional minimization) as a st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Physics
سال: 2016
ISSN: 0022-4715,1572-9613
DOI: 10.1007/s10955-016-1688-4